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1. INTRODUCTION 

In the current digital world, technology is often used to solve problems of many types. 

Problems can have many solutions, but optimization problems focus on searching for the 

best solution out of many possible solutions.1 There are a multitude of real-life 

applications to solving optimization problems, for example it is used in GPS systems like 

google maps, network routing and recommendations on social networks. One way 

technology solves optimization problems is by using algorithms.  Common methods used 

to formulate these algorithms are based on the greedy method and the dynamic 

programming method. The greedy method works by taking the most optimum next move, 

without inspecting its future outcomes. This means it can sometimes produce 

substandard solutions, but as it is based on a straightforward concept, it is easy to 

implement and generally takes less time to execute. Dynamic programming is based on 

finding and executing every possible solution and choosing the best one. This means it 

usually requires more memory and time to execute than the greedy method as it may 

perform more calculations than the greedy method, but its solution is typically confirmed.2 

When I was exposed to both these concepts, I wanted to test them on graph theory as it 

has numerous real-world applications. It is used in building communication networks, road 

networks and more. The most used greedy algorithm to solve graph theory related 

problems is the Dijkstra’s algorithm and the most used dynamic algorithm to solve graph 

theory related problems is the Bellman Ford algorithm. My exploration will be 

concentrated on comparing both Bellman Ford algorithm and Dijkstra’s algorithm by 

 
1 Black, Paul, “optimization problem”, xlinux, January 6, 2021, 
https://xlinux.nist.gov/dads/HTML/optimization.html 
2 Coderucks, “Dynamic Programming Vs Greedy Algorithm”, coderucks, January 24, 2021, 
”https://codecrucks.com/dynamic-programming-vs-greedy-algorithm/ 
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identifying how a change in the number of nodes affects the execution time of both 

algorithms. In addition, when used in the real world, the algorithms are rarely used with 

negative edge weights. Furthermore, both algorithms have the possibility of giving an 

incorrect answer when used with negative edge weights. For the above reasons, the 

exploration will only focus on positive edge weights and how increasing the nodes in a 

graph with positive edge weights will affect the time complexity of both Dijkstra’s and 

Bellman Ford’s algorithm.  
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2. BACKGROUND INFORMATION: 3 

2.1 - Graphs 

A graph is a type of data structure that stores information in 

the form of nodes and edges. 4 Edges show how each of the 

nodes are related (i.e. they connect 2 nodes and may have 

a value), and nodes can contain data. Graph ‘G’ can be 

represented as follows (Refer to Figure 1):  

 

        𝐺 ∶ (𝑉, 𝐸)           

 

G is the name of the graph. The set of vertices is shown by 

V and set of edges is shown by E. 5   

Graphs can either be directed or undirected, and weighted 

or unweighted. Directed graphs are graphs in which the edge 

points to a particular direction. This means that when we 

traverse between two nodes, we can only move in one 

direction but not the opposite.  Undirected graphs are graphs 

where we can traverse in both directions.6 Weighted graphs 

are graphs whose edges have specific values (also known 

 
3 Samah W.G. AbuSalim et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 917 012077 
4 Bhatta, Ranjit,”Graph Data Structure”, programiz, May 6 2022, https://www.programiz.com/dsa/graph 
5 Sun, Timothy, “Graphs”, Columbia, May 6 2022,  
http://www.columbia.edu/~cs2035/courses/ieor6614.S11/graph.pdf 
6 Little, Jack, “Directed and Undirected Graphs”, mathworks/MATLAB, May 7 2022, 
https://www.mathworks.com/help/matlab/math/directed-and-undirected-graphs.html 

 Figure 1: Edges and Nodes 

 Figure 2: Undirected and Weighted graph 
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as weights) and unweighted graphs are graphs whose edges do not have values.7  

Shortest path optimization problems apply to only weighted graphs as they calculate the 

distance between two nodes based on the “weights” of the edges. In the following 

exploration I will be using only undirected (Notice that the arrows do not point in a specific 

direction in Figure 2) and weighted graphs (notice the numbers on the edges in Figure 2).  

To represent a single edge of a graph, we use the following:  

 𝐸 ∶  (𝑢, 𝑣) 

u is the first vertex and v is the second vertex, E is  

the edge connecting both the first and the second edge. 

Note that in my exploration, (u,v) equals (v,u) for all edges as in an undirected graph, 

when you traverse in any direction, the weight remains the same.8 Weighted edges can 

be represented as follows:  

                                                𝐸: (𝑢, 𝑣)  =  𝑤  𝑂𝑅  𝑤(𝑢, 𝑣)  

“E : (u,v)” represents an edge, and w represents the weight 

of that edge, in the case of figure 4, w(u,v) = 5.  

 

The concept of a source node is very important in shortest 

path optimization problems. A source node is the starting node, or the node we want to 

calculate the distance from. For example, in Figure 4, if we would like to find the distance 

from u to v, u is the source node as we start taking the distance from u. Additionally in 

Figure 1, if we would like to find the distance from 1 to 4, 1 would be the source node. 

 
7 McQuain, “Data Structures And Algorithms”, VirginiaTech, May 7 2022, 
https://courses.cs.vt.edu/~cs3114/Fall10/Notes/T22.WeightedGraphs.pdf 

 

 

  Figure 3: Edge Representation 

 Figure 4: Representation of weighted graphs 
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Similarly, another important concept is the destination node. It’s the node we want to 

calculate the shortest path to. If we take the same example, 4 would be the destination 

node.  

 

Now that we have seen how a graph can be represented on paper, how can we represent 

it on screen? There are multiple methods for representing a graph on a screen, but the 

one I will be using is the adjacency matrix. It uses a 2D array of size V x V (V being the 

number of vertices in the graph).  9 Given a 2D array named ‘A’:  

           𝐴[𝑖][𝑗]  =  𝑤  

                                        𝐸𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑤𝑒𝑖𝑔ℎ𝑡 𝑤  

In this equation, i represents the first vertex, and j represents the second vertex, if an 

edge exists between them, we get a weight ‘w’ as the outcome, which corresponds to the 

weight of the edge connect vertex i and vertex j  (Note, for undirected graph A[i][j] = A[j][i]).  

2.2 - Relaxation 

The relaxation technique is used in both Dijkstra’s algorithm and Bellman Ford’s 

algorithm, so it may be useful to explain what relaxation is. Though relaxation on its own 

cannot produce solutions, it is often implemented in various algorithms in different ways 

to help find solutions. 

Relaxation works on updating estimates of the shortest path to each node. In both 

algorithms, the first step is to initialise the “estimates” of all nodes as infinity except the 

 
9 Wormald, Nicholas, “Graphs”, University of Western Australia, May 22, 2022, 
https://users.monash.edu/~lloyd/tildeAlgDS/Graph/#:~:text=The%20adjacency%20matrix%20of%20a,infin
ity%22%2C%20indicates%20this%20fact.&text=Adjacency%20Matrix%20of%20Weighted%20Directed%
20Graph.&text=Adjacency%20Matrix%20of%20Weighted%20Undirected%20Graph. 
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source node. Now we can introduce the relaxation statement and explain it using an 

example.  

Relaxation states (Note that d represents distance which corresponds to the current 

estimate on the node) - 10  

                                                             𝑖𝑓 𝑑[𝑣]  >  𝑑[𝑢]  + 𝑤(𝑢, 𝑣)   

 𝑡ℎ𝑒𝑛  𝑑[𝑣]  =  𝑑[𝑢]  +  𝑤(𝑢, 𝑣) 

The statement says that if the distance of vertex v is greater than the distance of vertex 

u + the weight of the edge u to v, then the distance of v is equal to the distance of u + the 

weight of the edge u to v. Let’s use an example to better understand this. Suppose we 

have a graph as in figure 5, with u as the source 

vertex. The source vertex always has a distance 

estimate of 0 since we start from the source 

(Estimates are shown above the node typically). This 

is because we do not need to traverse through any 

edges to reach the source. Vertex v’s estimate is updated to infinity. To find the shortest 

path to v based on the relaxation technique, if the distance of v (∞) is greater than the 

distance of u (0) + the w(u,v) (8), (∞ is greater than 0+8 = 8, so the next statement is 

executed), the distance of v is updated to d[u] + w(u,v) which is equal to 8.  

In the end, v’s estimate of infinity is updated to 8, which is the new estimate of the shortest 

path. Note that if the distance of v was instead smaller than the distance of u + w(u,v), 

the estimate on the node would remain the same.  

 
10 Jaiswal, Sonoo, “Relaxation”, javaTpoint, May 23 2022, 
https://www.javatpoint.com/relaxation#:~:text=The%20single%20%2D%20source%20shortest%20paths,e
quivalent%20the%20shortest%20%2D%20path%20weight. 

 Figure 5: Relaxation example 
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2.3 - Dijkstra’s Algorithm 

Dijkstra’s algorithm was created according to the greedy programming technique. This 

means the best condition is chosen at each step, without considering its future 

consequences.11 Let's understand this algorithm on a small graph. In figure 6, we will try 

to find the distance between vertex 1 and vertex 2. We observe that vertex 1 is the source 

vertex as its distance is estimated to 0. The other two vertices’ estimates are updated to 

infinity. Now we must update the estimates according to the direct edge paths from 1. 1 

has a direct edge to vertex 2 and vertex 3. This means we must relax (use relaxation 

technique) the nodes from 1 to 2 and 1 to 3. This updates the estimate of 2 to 8 and 3 to 

5. Once the estimates are updated, this means vertex 1 is fully “explored” (this is because 

we have updated estimates according to all direct edges of vertex 1), and hence 

according to Dijkstra’s algorithm 0 is 1s shortest path. In the next step according to 

Dijkstra’s algorithm, we must take the next node with the lowest estimate. In this case, 3 

has the lowest estimate, so we start from 3. Since 1s estimate is already verified, we don’t 

have to relax 1, but we have to relax vertex 2 as its estimate is not verified. Upon relaxing 

vertex 2, its estimate is updated to 7.  Now since all the edges from 3 have been 

discovered, 3 is now “explored” and its shortest path is 5. Since only one node is left 

(when only one node is left, it is automatically explored), the graph automatically becomes 

explored, which means the shortest path from 1 to 2 according to Dijkstra’s algorithm is 

7. 

 

                  Graph 1 Graph 2                   Graph 3 

 
11 Jain, Sandeep,“Dijkstra’s Shortest Path Algorithm”,GeeksForGeeks, May 25 2022,  
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/ 
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Figure 6: Dijkstra’s Algorithm  

 

The same rules can be applied on a larger graph with more vertices and edges. We would 

just have to relax the vertices more.  

2.4 - Bellman Ford’s Algorithm 

Bellman Ford’s algorithm was created according to the dynamic programming technique. 

Bellman Ford’s algorithm says that you must find all solutions and choose the best 

solution. We can find all the solutions by relaxing all the edges multiple times.12 We must 

relax all the edges V-1 times, where V is the number of vertices. This will ensure all 

solutions are found. Let’s test this example on the graph in figure 7.  Note that 1 is taken 

as the source vertex and 2 is the vertex to reach.  

First let’s make a list of all the edges in the graph -  

 (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1) 

Now we must relax all these edges 3-1 = 2 times (as there are 3 vertices). When we relax 

(1, 2) we get the weight on 2 as 5, when we relax (2, 1) the weight of 1 remains the same, 

when we relax (2, 3) the weight of 3 changes to 6, when we relax (3, 2) the weight of 2 

remains the same, when we relax (1, 3) the weight of 3 changes to 3, and when we relax 

 
12 Bhatta, Ranjit, “Bellman Ford’s Algorithm”, Programiz, July 9 2022,  
https://www.programiz.com/dsa/bellman-ford-algorithm 
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(3, 1) the weight of 1 remains the same. Now we have completed relaxing all the nodes 

once, we must repeat this process for one last time since there are 3 vertices. The 

outcomes are shown in figure 8.  

Now we have found the shortest path to vertex 2 from vertex 1, which according to 

Bellman Ford’s algorithm is 4. The same steps would have to be followed even for a larger 

graph.  

2.5 – Number Of Edges 

As the number of nodes increases, there are more edges that could be created in a given 

graph. When each node is connected to every other node in a graph system, it is known 

as a complete graph. Complete graph has the maximum number of edges for a graph 

with a given number of nodes. For my exploration, I will not be using complete graphs, 

but the maximum number of edges that could be created for a given number of nodes is 

important. It can be calculated with the formula (where n is the number of nodes) – 13 

                𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 =      
𝑛(𝑛−1)

2
  

 
13 Pandey, Avinash, “Complete Graph”, d3gt, July 15 2022, https://d3gt.com/unit.html?complete-graph 

Graph 1 – Initial graph Graph 2 – First relaxation Graph 3 – Second 
relaxation 

   

Figure 7: Bellman Ford’s Algorithm 
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3. METHODOLOGY: 

3.1 - Variables  

Independent Variable – Number of Nodes - To find the faster algorithm of the two, 

number of nodes is taken as the independent variable as in a graph, changing the 

number of nodes has a high effect on execution time. Number of nodes is also taken 

such that there is a varying change in the increase in the number of nodes. This allows 

us to examine the effect of differing rates of change in the number of nodes for both 

algorithms.  

Dependent Variable - Execution Time - Execution time was measured using the 

function “.nanoTime()” in Java. Each data set was run multiple times (10 times) in 2 

different IDEs to reduce errors related to inefficiencies in IDE.  The first execution was 

deleted from each IDE execution as the time taken for the Java virtual machine to boot 

may make the program slower. The time is started exactly once the array is inputted into 

the method. The methods for each algorithm were written to ensure maximum efficiency. 

Unnecessary data copies were avoided, and string buffer was used rather than multiple 

“system.out“ to ensure computation is focused only on the execution of the algorithms.  

The time taken by both algorithms was outputted only once towards the end.   

Control Variable - CPU and RAM Usage - The same device was used for executing all 

algorithms. All applications other than the necessary applications and the IDE were kept 

closed to ensure maximum usage of CPU and RAM. Both IDEs were used evenly along 

with several executions. This ensures that fluctuations in use of system resources are 

eliminated along with IDE related overheads.  

3.2 – Matrices (2D Arrays) Used 
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To represent the graphs in a 2D Array, a program was created to generate a matrix such 

that the graph created is unweighted. Additionally, since using a complete graph would 

favour Dijkstra’s algorithm (as more nodes means much more relaxation for Bellman 

Ford’s algorithm), the program was given a 50% probability to make an edge at any 

possible node to node connection. Lastly, care was taken to ensure that the graphs were 

not disconnected (a graph in which there is no connection between any two nodes), if the 

graph generated was disconnected, a recursive algorithm was created to generate 

another graph until a connected graph was created. Lastly, the source and destination 

node were randomized, but were ensured that they were not the same node.  

3.3 – Experimental Procedure 

Nodes from the following values were taken –  

Number of Nodes Maximum Number Of Edges Possible 

10 45 

13 78 

16 120 

19 171 

22 231 

25 300 

30 435 

35 595 

40 780 

45 990 

50 1,225 
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60 1,770 

80 3,160 

100 4,950 

200 19,900 

300 44,850 

400 79,800 

500 124,750 

600 179,700 

800 319,600 

1000 499,500 

Table 1: Number of Nodes and Maximum Number Of Edges 

 

Each number of nodes was generated 22 different connected graphs. The 22 graphs were 

spread equally among 2 different IDE’s and executed with both Dijkstra’s and Bellman 

Ford’s algorithm. The first two executions in each IDE were not considered. The execution 

times outputted by each algorithm were noted. 
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4. HYPOTHESIS:  

As the number of nodes increases, the time of execution for the Bellman Ford algorithm 

increases at a faster rate than Dijkstra’s algorithm. The time taken by the Bellman Ford 

algorithm will be larger than Dijkstra’s algorithm for all data sets, but Bellman Ford’s 

algorithm will have more stable results.  
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5. THE EXPERIMENTAL RESULTS 

5.1 - Dijkstra’s Algorithm 

5.1.1 – Tabular Data 

The table below shows the processed results of running Dijkstra’s algorithm on a 

varying number of nodes.  

Number Of Nodes Average Time Taken 

(seconds) 

Relative Standard 

Deviation (Percentage) 

10 19,253 44.93411 

13 22,678 36.6638 

16 34,852 65.8444 

19 35,505 66.01341 

22 40,615 33.42257 

25 51,357 40.27035 

30 52,510 51.47192 

35 89,021 30.52561 

40 99,694 63.56813 

45 115,526 67.61167 

50 138,226 69.71442 

60 147,016 77.00876 

80 141,515 67.17754 

100 227,001 83.56837 

150 271,200 52.41632 

200 341,438 211.8987 
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300 529,384 43.94714 

400 642,989 54.44302 

500 1,189,500 196.0965 

600 2,243,100 64.78164 

800 3,049,115 149.4159 

1000 4,107,673 76.89447 

Table 2: Dijkstra’s Algorithm 

 

5.1.2 – Graphical Data 

The following graph shows the number of nodes against time taken for Dijkstra’s 

algorithm to complete finding the shortest path. Note that the graphs start from 100 

nodes as including the other values would result in data points being too close to each 

other (as their values are small compared to the large scale).  

 

Graph 1: Dijkstra’s Algorithm Time Complexity 
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The following graph displays the relative standard deviation of each of the number of 

nodes, when executing Dijkstra’s algorithm.   

 

Graph 2: Dijkstra’s Algorithm Relative Standard Deviation 

5.1.3 – Data Analysis 

We observe that as the number of nodes increases, the time taken by the algorithm also 

increases. This is likely because the algorithm now must traverse more nodes than 

before and relax more edges than before. We also observe that the relative standard 

deviation value is high. This is because the number of edges were randomized. Hence 

the possible combinations to reach the destination from the source may fluctuate 

greatly. Additionally, since the algorithm works by choosing the best possible “next 

solution”, the number of times this must be done can vary greatly depending on the 

number of nodes. This may bring a broad range of execution times, which means that 

this algorithm takes an uneven amount of time when calculating the distance between 2 

nodes.   
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5.2 – Bellman Ford’s Algorithm 

5.2.1 – Tabular Data 

The table below shows the processed results of running the Bellman Ford’s algorithm 

on a varying number of nodes.  

Number Of Nodes Average Time Taken 

(seconds) 

Relative Standard 

Deviation 

10 35,800 20.99313 

13 62,742 23.5367 

16 103,693 32.55637 

19 141,573 47.94875 

22 156,831 47.44195 

25 173,728 69.93443 

30 241,873 64.25956 

35 259,147 89.29785 

40 287,510 71.53663 

45 298,305 18.93875 

50 476,047 37.08386 

60 584,622 37.56087 
 

80 3,451,197 227.7628 

100 4,010,942 130.2899 

150 5,238,189 184.4197 

200 12,858,721 48.7599 

300 29,544,352 44.11812 
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400 67,634,368 11.73972 

500 117,937,500 11.1074 

600 256,789,463 8.223952 

800 799,591,105 11.59528 

1000 2,024,936,721 12.65869 

Table 3: Bellman Ford’s Algorithm  

 

5.2.2 – Graphical Data 

The following graph shows the number of nodes against time taken for Bellman Ford’s 

algorithm to complete finding the shortest path. The graph starts from the value of 100 

nodes for the same reason as Dijkstra’s algorithm.  

 

Graph 3: Bellman Ford’s Algorithm Time Complexity 

The following graph displays the relative standard deviation of each of the number of 

nodes, when executing Bellman Ford’s Algorithm.  
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Graph 4: Bellman Ford’s Algorithm Relative Standard Deviation 

5.2.3 – Data Analysis 

As the number of nodes increases, the time taken by the algorithm also increases. This 

happens because when the number of nodes increases, the number of edges that could 

be created also increases. This leads to a higher number of edges being created as the 

graph generator has a 50% probability to create an edge for every given connection. This 

means the algorithm has to relax more edges when the number of nodes increases, and 

hence longer time taken as the number of nodes increases. Though it takes long time to 

execute the algorithm, the deviation of values is low as the algorithm always relaxes all 

nodes of the graph. This means that though the number of edges is randomized, the 

algorithm already tries out all possible combinations. So even a change in the number of 

edges does not drastically increase the number of edges that need to be relaxed. Also 

note that for a given number of nodes, the number of times the edges must be relaxed 

remains the same as the number of vertices remains the same. This could lead to a lower 

deviation value.  
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5.3 – Comparative Analysis 

5.3.1 – Tabular Data 

The table below shows the results of running the Dijkstra’s algorithm and Bellman 

Ford’s algorithm on a varying number of nodes.  

Dijkstra’s Algorithm Bellman Ford’s Algorithm 

Number Of 

Nodes 

Average 

Time Taken 

(seconds) 

Relative 

Standard 

Deviation 

Number Of 

Nodes 

Average 

Time Taken 

(seconds) 

Relative 

Standard 

Deviation 

10 19,253 44.93411 10 35,800 20.99313 

13 22,678 36.6638 13 62,742 23.5367 

16 34,852 65.8444 16 103,693 32.55637 

19 35,505 66.01341 19 141,573 47.94875 

22 40,615 33.42257 22 156,831 47.44195 

25 51,357 40.27035 25 173,728 69.93443 

30 52,510 51.47192 30 241,873 64.25956 

35 89,021 30.52561 35 259,147 89.29785 

40 99,694 63.56813 40 287,510 71.53663 

45 115,526 67.61167 45 298,305 18.93875 

50 138,226 69.71442 50 476,047 37.08386 

60 147,016 77.00876 60 584,622 37.56087 

80 141,515 67.17754 80 3,451,197 227.7628 

100 227,001 83.56837 100 4,010,942 130.2899 

150 271,200 52.41632 150 5,238,189 184.4197 
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200 341,438 211.8987 200 12,858,721 48.7599 

300 529,384 43.94714 300 29,544,352 44.11812 

400 642,989 54.44302 400 67,634,368 11.73972 

500 1,189,500 196.0965 500 117,937,500 11.1074 

600 2,243,100 64.78164 600 256,789,463 8.223952 

800 3,049,115 149.4159 800 799,591,105 11.59528 

1000 4,107,673 76.89447 1000 2,024,936,721 12.65869 

Table 4: Comparative Data  

 

5.3.2 – Graphical Data 

The following graph compares the number of nodes against time taken for Dijkstra’s 

algorithm and Bellman ford’s algorithm to complete finding the shortest path.  

 

Graph 5: Comparative Algorithm Time Complexity 

 



 
 

24 
 

Note that the above graph only contains values from nodes 10 to 80 due to the large 

scale and large differences in execution time of both algorithms.  

 

The following graph compares the number of nodes against the relative standard 

deviation for both the graphs.  

 

Graph 6: Comparative Relative Standard Deviation 

5.3.3 – Analysis 

We see that for all number of nodes, Dijkstra’s algorithm executes faster than Bellman 

Ford’s. This is likely because Dijkstra’s algorithm, being based on the greedy approach 

does not need to try all possible combinations in the graph. Bellman Ford’s algorithm on 

the other hand is based on the dynamic approach and must try all possible combinations 

in the graph. Additionally, Dijkstra’s algorithm will have to relax the nodes a lesser number 

of times compared to Bellman Ford’s algorithm; hence it can be executed faster. The 

same is reflected in the graph. When looking at the relative standard deviation, we 
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observe that Dijkstra’s algorithm on average has a higher relative standard deviation. This 

is because Bellman Ford’s algorithm always relaxes all edges when searching for the 

shortest path between two nodes in a graph. Hence in all cases, all edges of the graph 

are relaxed in Bellman Ford’s algorithm. In the case of Dijkstra’s algorithm, it only relaxes 

edges that need to be relaxed to obtain the shortest path for the given source and the 

destination. So, if there are many combinations to reach the destination, then the time 

taken will be higher, but if not, it will be lesser. This means that though Dijkstra’s algorithm 

is faster compared to Bellman Ford’s, Dijkstra’s algorithm may give drastically different 

execution times for different types of graphs. Lastly, we see that Bellman Ford’s algorithm 

slows down much faster than Dijkstra’s algorithm. This is seen through the larger slope 

of the graph (especially prominent from nodes 60 to 80).  

  



 
 

26 
 

6. EVALUATION OF HYPOTHESIS 

The hypothesis stands true as it can clearly be seen that Dijkstra’s algorithm is faster for 

all number of nodes. Additionally, by analysing the slope of the graphs, we see that 

Bellman Ford’s algorithm gets slower at a faster rate than Dijkstra’s algorithm. We also 

observe that due to the lower relative standard deviation of Bellman Ford’s algorithm, it 

has a much more stable execution time.  
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7. EVALUATION 

Strengths -  

• Methods for both algorithms were written to ensure that computation is focused on 

the algorithms.  

• Inclusion of both mean and relative standard deviation analysis allows us to 

effectively compare both algorithms mathematically.   

• Exploration has considered control variables and ensures that the results remain 

unaffected by system resources and IDEs.  

• Can verify if the shortest path execution is correct by comparing the results of both 

algorithms for each execution.  

• Automated undirected graph creating system ensures that there is no human error 

related to graph creation. Ensuring that the graph is connected makes sure that 

both algorithms execute without errors.  

• Use of multiple graphs for same number of nodes ensures that the algorithms are 

tested in multiple environments, hence enhancing the diversity of data. Data input 

is free from human bias.  

• Inputs of both algorithms were in the same data structure. This ensures that the 

effect of data structures in both algorithms remains consistent.  

Limitations –  

• Number of edges has not been considered.  

• The exploration does not consider negative edge weights.  

• Space complexity of the algorithms is not considered in this exploration.  
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Future Scope –  

Improvements to my original exploration can be made by considering the number of edge 

weights along with the execution times of the graphs, rather than only the number of 

nodes. Furthermore, the probability of creating an edge, could be changed to see the 

effect of edges on time complexity of both algorithms. Negative edge weights have not 

been considered in this exploration. Though there aren’t many uses for negative edge 

weights, it would be interesting to consider how both algorithms perform when inputted 

negative edge weights. Another interesting consideration would be to use Dial’s 

implementation of Dijkstra’s algorithm on smaller edge weights and see how this affects 

the time complexity and execution time of Dijkstra’s algorithm. Additionally, we could 

compare the efficiency of different dynamic and heuristic approaches used to solve the 

travelling salesmen problem.  Lastly, we could also compare how AI driven algorithms, 

such as the A* algorithm, compares to both the greedy and dynamic approach.  
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8. CONCLUSION 

In this paper, the effects of changing the number of vertices is considered for both 

Dijkstra’s and Bellman Ford’s algorithm in terms of execution time. They were analysed 

and compared based on mathematical observations. Additionally, logical explanations 

were made to explain the results from the experiment.  

 

From the results, we see that the greedy programming technique (Dijkstra’s algorithm), is 

much faster than the dynamic programming technique (Bellman Ford’s algorithm), for any 

number of nodes.  

 

Though the speed of Dijkstra’s algorithm is faster than that of Bellman Ford’s, we observe 

that there is a large deviation in the values of Dijkstra’s algorithm. This may mean that the 

speed of the algorithm comes at the cost of higher inefficiencies when tested with graphs 

of different types. Bellman Ford’s algorithm on the other hand has a lower deviation on 

average and this means that it can deal with many types of graphs in a consistent manner.  

 

Since the edge weights are randomly picked, the effects of edge weights on both the 

algorithms cannot be confirmed, but as the number of nodes consistently increases, it 

can be confirmed that as the number of nodes increases, this increases the chance of 

creating an edge, both of which slow down both algorithms. Dijkstra’s algorithm’s time 

complexity is not affected as much as that of Bellman Ford’s algorithm when the number 

of nodes increases. This may also be a defining factor when deciding which algorithm to 

use.  
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I hope this paper will prove useful to people by providing interesting perspectives on 

both algorithms. I hope it helps people who work on, and plan to implement solutions for 

the shortest path optimization problem.  
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Appendices 

Appendix A: Code Used For Data Collection 

A1: Bellman Ford’s Algorithm  

import java.io.*; 

import java.util.Scanner; 

 

// Class the computes the shortest distance using Bellman Ford 

class ShortestPathBF { 

 

    int[][] m_edges; 

    StringBuilder m_outBuf; 

    int m_numNodes; 

    int m_numEdges; 

 

    ShortestPathBF(int[][] edges, int num_nodes) { 

    m_edges = edges; 

    m_outBuf = new StringBuilder(); 

    m_numEdges = edges.length; 

    m_numNodes = num_nodes; 

    } 

 

    void findShortestPath (int src) 

    { 

 

    // Reset the output buffer to print text 

    m_outBuf.setLength(0); 

    long start = System.nanoTime(); 

 

    // Initialize distance of all vertices as INFINITE except for source 

    // which iz zero 

 

    int dist[] = new int[m_numNodes]; 

 

    for (int i = 0; i < m_numNodes; i++) 

        dist[i] = Integer.MAX_VALUE; 

 

    dist[src] = 0; 

 

    // Relax all edges numNodes-1 times. 

    for (int count=1; count < m_numNodes; count++) { 
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        for (int e = 0; e < m_numEdges; e++) { 

 

        int from = m_edges[e][0]; 

        int to = m_edges[e][1]; 

        int d = m_edges[e][2]; 

 

        // If the from node in the edge is at INFINITY distance, skip 

        if(dist[from] == Integer.MAX_VALUE) continue; 

 

        // If the distance to node can be relaxed, relax it 

        if ( dist[from]+d < dist[to] ) dist[to] = dist[from] + d; 

        } 

    } 

 

    // If we are still able to relax the edges, this might mean there are 

    // negative cyles in the graph 

 

    for (int e = 0; e < m_numEdges; e++) { 

 

        int from = m_edges[e][0]; 

        int to = m_edges[e][1]; 

        int d = m_edges[e][2]; 

 

        // If the from node in the edge is at INFINITY distance, skip 

        if(dist[from] == Integer.MAX_VALUE) continue; 

        if (dist[from] +  d < dist[to]) 

        m_outBuf.append("Graph contains negative" 

                   +" weight cycle\n"); 

    } 

 

    m_outBuf.append("Vertex Distance from Source " + src + " is:\n"); 

    m_outBuf.append("Execution time [BF] : " + String.valueOf(System.nanoTime()-

start) + " nano seconds\n"); 

 

    // for (int i = 0; i < m_numNodes; i++) 

    //     m_outBuf.append(src + " --> " + i + " is " + dist[i] + "\n"); 

Commented Code 

 

    System.out.println(m_outBuf); 

    } 

 

 

    public static void main(String[] args) 
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    { 

    // Enter the graph same way that we are entering for Dijkstra and lets build 

edgers ourselves 

 

  int graph[][] = new int[][] { { 0, 4, 0, 5, 0, 1, 0, 8, 0 }, 

                                { 4, 0, 8, 0, 6, 0, 10, 11, 328 }, 

                                { 0, 8, 0, 7, 0, 4, 0, 0, 2 }, 

                                { 192, 0, 7, 0, 9, 14, 0, 6, 0 }, 

                                { 0, 22, 0, 9, 0, 10, 0, 3, 0 }, 

                                { 0, 1, 4, 14, 10, 0, 2, 0, 0 }, 

                                { 0, 0, 0, 0, 0, 2, 0, 1, 6 }, 

                                { 8, 11, 0, 8, 0, 0, 1, 0, 7 }, 

                                { 0, 0, 2, 0, 5, 7, 6, 7, 0 } }; 

 

    //  No. of edges is equivalent to no. of non-zero elements in the matrix 

    int num_nodes = graph.length; 

    int num_edges = 0; 

 

    for (int i = 0; i < num_nodes; i++) { 

        for (int j=0; j < graph[0].length; j++) { 

              if (graph[i][j] != 0) num_edges++; 

        } 

    } 

 

    // Lets build edges from the graph. 

    int edges[][] = new int[num_edges][3]; 

 

    int e = 0; 

    for (int i = 0; i < num_nodes; i++) { 

        for (int j = 0; j < graph[0].length; j++) { 

 

        if (graph[i][j] != 0) { 

            edges[e][0] = i;            // from node 

            edges[e][1] = j;            // to node 

            edges[e][2] = graph[i][j];  // distance 

            e++; 

        } 

        } 

    } 

 

    ShortestPathBF spb = new ShortestPathBF(edges, num_nodes); 

 

    Scanner sc = new Scanner(System.in); 

    String s; 
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    s = sc.nextLine(); 

    spb.findShortestPath(8); 

    s = sc.nextLine(); 

    spb.findShortestPath(8); 

    s = sc.nextLine(); 

    spb.findShortestPath(8); 

    s = sc.nextLine(); 

    spb.findShortestPath(8); 

    s = sc.nextLine(); 

    spb.findShortestPath(8); 

 

    // Every edge has three values (u, v, w) where 

    // the edge is from vertex u to v. And weight 

    // of the edge is w. 

    // int graph[][] = { { 0, 1, -1 }, { 0, 2, 4 }, 

    //                 { 1, 2, 3 }, { 1, 3, 2 }, 

    //                 { 1, 4, 2 cd }, { 3, 2, 5 }, 

    //                 { 3, 1, 1 }, { 4, 3, -3 } }; 

 

    //    BellmanFord(graph, V, E, 0); 

 

    } 

} 

 

Code modified from geeks for geeks.  

A2: Dijkstra’s Algorithm  

import java.io.*; 

import java.util.Scanner; 

 

// Class that computes shortest path using Dijkstra's algorithm 

class ShortestPathDijkstra { 

 

    int[][] m_graph; 

    StringBuilder m_outBuf; 

 

    ShortestPathDijkstra(int[][] graph) { 

    m_graph = graph; 

    m_outBuf = new StringBuilder(); 

    } 

 

    // Find the next minDstance node thats not yet processed 
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    int minDistance(int dist[], Boolean isProcessed[]) 

    { 

        // Initialize min value 

        int min_dist = Integer.MAX_VALUE; 

    int min_index = -1; 

 

        for (int v = 0; v < dist.length; v++) { 

            if (!isProcessed[v] && dist[v] <= min_dist) { 

                min_dist = dist[v]; 

                min_index = v; 

            } 

    } 

 

        return min_index; 

    } 

 

    // A utility function to print the constructed distance array 

    void printComputation(int src, int dst, int dist[], int n, 

              Boolean isProcessed[], boolean allNodesProcessed) 

    { 

        m_outBuf.append("Vertex Distance from Source "+ src + " is:\n" ); 

 

        for (int i = 0; i < dist.length; i++) { 

 

        String isMinFound = " "; 

        if (isProcessed[i]) isMinFound = "*"; 

 

        if ( !allNodesProcessed && (i == dst)) { 

        m_outBuf.append(src + " --> " + i + isMinFound + " is " + dist[i] + " <== 

***\n"); 

        } else { 

        m_outBuf.append(src + " --> " + i + isMinFound + " is " + dist[i] + 

"\n"); 

        } 

    } 

    } 

 

    // Function that implements Dijkstra's single source shortest path 

    void findShortestPath (int src, int dst) 

    { 

 

    m_outBuf.setLength(0); 

    long start = System.nanoTime(); 

 

    int num_nodes = m_graph.length; 
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        int dist[] = new int[num_nodes];  // shorted computed distance from src 

to i as of now 

    Boolean isNodeProcessed[] = new Boolean[num_nodes]; 

 

        // Initialize all distances from src as INFINITE (MAX_VALUE)  and 

isNodeProcessed[] as false 

        for (int i = 0; i < num_nodes; i++) { 

            dist[i] = Integer.MAX_VALUE; 

            isNodeProcessed[i] = false; 

        } 

 

        // Distance of source vertex from itself is always 0 

        dist[src] = 0; 

 

        // Find shortest path for all vertices 

        for (int count = 0; count < num_nodes-1; count++) { 

 

            // Pick the minimum distance vertex from src thats not processed yet 

        int min_dist = Integer.MAX_VALUE; 

        int minNode = -1; 

 

        for (int v = 0; v < dist.length; v++) { 

        if (isNodeProcessed[v]) continue; 

        if (dist[v] <= min_dist) { 

            min_dist = dist[v]; 

            minNode = v; 

        } 

        } 

 

        // If minNOde is destination we are done.. 

 

        if (minNode == dst) { 

 

        // We found the min staince to destination node 

        m_outBuf.append("Yay !! we found the shortest path from " + src + " to " 

+ dst + ": " + dist[dst] + "\n"); 

        m_outBuf.append("Execution time: " + String.valueOf(System.nanoTime()-

start) + " nano seconds\n"); 

        } 

 

            // Mark the picked node as processed 

            isNodeProcessed[minNode] = true; 

 

            // Update dist of adjacent nodes from src 

            for (int v = 0; v < num_nodes; v++) { 
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                // Update dist[v] only if is not in isNodeProcessed, there is an 

                // edge from minNode to v, and total weight of path from src to 

                // v through minNode is smaller than current value of dist[v] 

 

        if (isNodeProcessed[v]) continue; 

        if (dist[minNode] == Integer.MAX_VALUE) continue; 

        if (m_graph[minNode][v] == 0) continue; 

 

                if (dist[minNode] + m_graph[minNode][v] < dist[v]) 

                    dist[v] = dist[minNode] + m_graph[minNode][v]; 

        } 

 

        } 

 

    m_outBuf.append("Execution time [Dijkstra] : " + 

String.valueOf(System.nanoTime()-start) + " nano seconds\n"); 

    // for (int i = 0; i < dist.length; i++) 

    //     m_outBuf.append(src + " --> " + i + " is " + dist[i] + 

"\n");   commented code 

    System.out.println(m_outBuf); 

    } 

 

    public static void main(String[] args) 

    { 

    // Graph with N nodes is represented in NxN array for simplicity 

        int graph[][] = new int[][] { { 0, 4, 0, 5, 0, 1, 0, 8, 0 }, 

                                    { 4, 0, 8, 0, 6, 0, 10, 11, 328 }, 

                                    { 0, 8, 0, 7, 0, 4, 0, 0, 2 }, 

                                    { 192, 0, 7, 0, 9, 14, 0, 6, 0 }, 

                                    { 0, 22, 0, 9, 0, 10, 0, 3, 0 }, 

                                    { 0, 1, 4, 14, 10, 0, 2, 0, 0 }, 

                                    { 0, 0, 0, 0,10, 2, 0, 1, 6 }, 

                                    { 8, 11, 0, 8, 0, 0, 1, 0, 7 }, 

                                    { 0, 0, 2, 0, 5, 7, 6, 7, 0 } }; 

 

        ShortestPathDijkstra spd = new ShortestPathDijkstra(graph); 

 

    Scanner sc = new Scanner(System.in); 

    String s; 

 

    s = sc.nextLine(); 

        spd.findShortestPath(8, 1); 

    s = sc.nextLine(); 
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    spd.findShortestPath(8, 1); 

    s = sc.nextLine(); 

    spd.findShortestPath(8, 1); 

    s = sc.nextLine(); 

        spd.findShortestPath(8, 1); 

    s = sc.nextLine(); 

    spd.findShortestPath(8, 1); 

 

    } 

} 

 

 

A3: Graph Generator Algorithm 

import java.io.*; 

import java.util.Arrays; 

import java.util.Scanner; 

import java.util.Random; 

import ShortestPathBF; 

import ShortestPathDijkstra; 

 

class Graphgenerator { 

 

public static int[][] graphG(int N) //N is the number of vertices 

{ 

    int temp; 

    int[][] Graph = new int[N][N]; 

    Random number = new Random(); 

    for(int i =0; i < N; i++){ 

        for(int j = 0; j < N; j++){ 

            Graph[i][j] = -1; 

        } 

    } 

    for(int i = 0; i < N; i++){ 

        for(int j = 0; j < N; j++){ 

            if(i == j){ 

                Graph[i][j] = 0; 

                continue; 

            } 

            else if(Graph[i][j] != -1) 

            { 

                continue; 

            } 

            if(number.nextInt(2) == 0){ 
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                Graph[i][j] = 0; 

                Graph[j][i] = 0; 

                continue; 

            } 

              else{ 

                if(Graph[i][j] == -1 && Graph[j][i] == -1){ 

                    temp = 1+number.nextInt(999); 

                    Graph[i][j] = temp; 

                    Graph[j][i] = temp; 

                } 

            } 

        } 

    } 

    return Graph; 

} 

    public static void main(String[] args){ 

        Random number = new Random(); 

        int size = 20; 

        int S = 1+number.nextInt(size); // calculates the source 

        int D = 1+number.nextInt(size); // calculates the destination 

        int[][] X = graphG(size); 

        // for (int i = 0; i < X.length; i++) { //this equals to the row in our 

matrix. 

        //     for (int j = 0; j < X[i].length; j++) { //this equals to the 

column in each row. 

        //        System.out.print(X[i][j] + " "); 

        //     } 

        //     System.out.println(); //change line on console as row comes to end 

in the matrix. 

        //  } 

         ShortestPathDijkstra y = new ShortestPathDijkstra(X); 

         int num_nodes = X.length; 

    int num_edges = 0; 

 

    for (int i = 0; i < num_nodes; i++) { 

        for (int j=0; j < num_nodes; j++) { 

              if (X[i][j] != 0) num_edges++; 

        } 

    } 

 

    // Lets build edges from the graph. 

    int edges[][] = new int[num_edges][3]; 

 

    int e = 0; 

    for (int i = 0; i < num_nodes; i++) { 
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        for (int j = 0; j < num_nodes; j++) { 

 

        if (X[i][j] != 0) { 

            edges[e][0] = i;            // from node 

            edges[e][1] = j;            // to node 

            edges[e][2] = X[i][j];  // distance 

            e++; 

        } 

        } 

    } 

 

         ShortestPathBF spb = new ShortestPathBF(edges, num_nodes); 

         for(int i=0; i<21; i++){       // computes 20 trials per execution 

            S = 1+number.nextInt(size); // calculates the source 

            D = 1+number.nextInt(size); // calculates the destination 

            X = graphG(size); 

            y.findShortestPath(S, D); 

            spb.findShortestPath(S); 

         } 

    } 

} 

 

Code modified from geeks for geeks.  

Appendix B: Raw Data Collection 

B1: Dijkstra’s Algorithm 

(Small font was used as the numbers were extremely large) 

IDE 1: Visual Studio Code (version 1.70) 

Number 

of 

Nodes 

Execution Time (nanoseconds) 

10 13300 10900 20300 13700 14600 21900 45700 18300 33400 15400 

13 26300 30300 15900 40400 22100 25000 11800 29900 16000 14000 

16 13300 25800 28100 40700 28600 36200 53000 20500 9900 32300 
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19 27400 12400 39100 28000 14000 56700 20100 49500 50600 21400 

22 23000 10000 36600 34100 31300 40100 34400 43100 39500 41200 

25 72800 31700 47600 17200 80700 40400 17700 90400 50800 50400 

30 23600 60700 18300 108600 46400 26600 61100 45600 16600 79800 

35 92500 118200 24500 84400 89000 103400 71100 102000 84900 124100 

40 154000 112900 95200 90900 49600 86100 79700 120000 105800 135100 

45 120100 134300 101400 26400 141300 49200 108700 349700 81400 61600 

50 61500 159600 181800 74300 99100 191900 23100 168300 43700 124200 

60 295400 88600 207700 51800 203100 144600 135900 37900 180300 24700 

80 326000 69700 296400 295600 203100 144600 135900 37900 180300 24700 

100 428200 815700 68230 231400 128900 502100 145800 186200 157100 125100 

150 309400 184200 360600 136600 187800 360900 177100 22700 666000 326300 

200 2740300 2267700 821900 418300 263300 409600 359800 226500 148700 169300 

300 357500 771700 479600 129900 295200 497500 108800 378900 561600 85000 

400 979700 621700 517900 1207300 1460400 756400 540000 269000 718400 123600 

500 1037600 20747900 
 

1346900 
 

16157500 
 

2175900 1350400 
 

339000 
 

929600 
 

609900 
 

1496400 
 

600 2195000 595500 1959400 645600 364900 261700 528000 606600 575900 1631800 

800 4508000 3068500 28925900 3544900 2338900 3354000 4619200 436100 3446600 1145500 

1000 5900500 2180000 8844500 238500 107100 758500 4600300 4491700 872900 1422700 

 

 

IDE 2: Eclipse (version 2022-06 R) 
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Number 

of Nodes 

Execution Time (nanoseconds) 

10 16900 14400 24000 24200 24000 8400 14900 14000 33400 14500 

13 15400 16000 32000 14500 19600 22000 17600 23400 16000 38100 

16 32600 41400 31900 57700 24300 27200 16500 34400 25100 115300 

19 22400 31900 10600 38800 29900 33400 54000 24400 19200 113200 

22 40200 56900 67400 54400 42800 28400 60300 42900 34000 41200 

25 40400 42200 31500 72000 36200 60200 50000 63700 64000 66300 

30 75800 42300 28100 93700 61500 68400 89100 42500 61000 23800 

35 114100 75100 97300 111300 46900 81500 132100 88000 52800 112300 

40 134200 36800 114600 79900 74200 322100 49800 36400 44500 106600 

45 61400 38500 142300 265400 107000 149900 67700 100400 51500 98200 

50 123200 184300 463800 111600 91900 104800 126300 51600 68700 67900 

60 183800 189600 136000 66000 26900 63300 45400 49700 17100 61000 

80 29700 123500 82200 37500 98900 127700 63300 80600 88000 270900 

100 125400 74500 423800 128200 198800 37000 159900 188400 123900 189800 

150 326100 432300 329900 229300 144000 232400 144000 232400 403700 273200 

200 169300 152800 410800 139300 148900 593900 59400 203200 321700 204900 

300 98000 563500 316600 54500 230000 43400 433000 764100 402800 97700 

400 103300 44600 621900 767400 564700 149700 680000 689900 758500 745700 

500 1381400 991400 871400 656700 405100 1365200 266500 1236900 458300 1576300 

600 1432100 2453000 2298300 2031000 1195800 2012900 355500 514300 1488300 889000 
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800 1325500 2906500 2773100 374800 851800 2382500 3858400 3383100 2621600 3506400 

1000 1122700 3946100 5256400 5044700 177200 4927600 1434900 1434600 2252200 3142800 

 

B2: Bellman Ford’s Algorithm  

(Small font was used as the numbers were extremely large) 

IDE 1: Visual Studio Code (version 1.70) 

Number 

of 

Nodes 

Execution Time (nanoseconds) 

10 36000 28000 34500 24500 36200 41500 59200 35000 38800 34600 

13 61000 72900 49900 53700 41200 100600 57700 50100 66600 44300 

16 120700 67400 65400 65600 108700 81500 129300 103600 92500 98900 

19 112900 118100 118900 111800 117200 149200 107500 152300 172200 107400 

22 182400 168000 166900 191500 187200 272900 282700 174800 259700 203500 

25 273700 259500 256700 265400 239700 307300 331800 149800 107000 80800 

30 435000 439100 571800 181000 120300 94600 462000 571300 513200 442400 

35 664400 772100 170600 133600 157900 195000 135100 107700 138000 281400 

40 931000 293600 162000 132700 177200 250800 180900 222200 155900 163500 

45 380300 231400 262700 263900 263000 347200 395000 287000 274900 351700 

50 357200 764400 498600 335500 315000 300500 355000 562500 679800 440900 

60 804000 580600 745900 527600 643800 700300 763100 1421400 840700 955600 

80 1080700 1900100 1874300 1362000 2083700 1629400 1193000 9016100 1232800 2188200 
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100 2075300 18699700 205560 3466700 2162600 3514300 1832800 821000 1709700 954200 

150 309400 184200 360600 136600 187800 360900 177100 22700 666000 326300 

200 31286200 27689900 17495000 11618100 13454500 9718800 11399200 12216900 13003000 10270000 

300 76050500 30492800 53020900 22648300 26189200 24503500 22737600 25030800 24816600 26033500 

400 54824300 62584800 84945200 73603700 72374000 65990400 67882200 64014800 64716100 61557400 

500 157741700 102236200 108568000 102379200 113677200 106203800 111136600 104532400 111603800 115837200 

600 236330600 239946000 241099000 241107000 241315800 249153400 249259500 231633100 233536700 262235900 

800 572574300 570297400 806017300 828918500 814160900 864612600 818976500 809288200 819130600 823684500 

1000 
1840821500 2838474700 2515692700 2268271100 1956530700 1915711400 1947348600 1906181400 1896393600 1922388500 

 

 

IDE 2: Eclipse (version 2022-06 R) 

Number 

of 

Nodes 

Execution Time (nanoseconds) 

10 27900 31200 27400 43000 35100 34900 34600 40800 38800 37000 

13 67000 77300 75800 62100 67600 63100 70700 71600 38900 61300 

16 153400 202100 92500 117200 72400 78700 117200 118600 89600 121400 

19 112300 165100 185500 105900 145100 207900 131300 155600 403700 102200 

22 62300 78300 126300 61100 49100 45200 101600 166700 199600 52900 

25 49100 125700 59500 66800 95850 40800 56800 60000 461300 62400 

30 500400 203600 174500 146500 107500 171200 124100 99300 104900 401200 
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35 162400 340600 113000 170200 100800 148600 109900 177600 838200 165100 

40 240500 227800 240700 165600 262500 209700 131600 203400 244000 239300 

45 249900 284100 232700 356400 314600 358500 328600 298300 187600 231400 

50 489000 561100 288900 490300 982400 434000 409900 420100 359800 464200 

60 651400 746800 296500 610600 311900 346600 217100 521400 259300 633100 

80 1883900 1416800 997800 1008100 1162000 1654500 2302300 1193800 41028400 1723800 

100 1553100 1474900 1432600 9363900 786000 1634700 9363900 884400 3637400 1413500 

150 2969100 2506300 3168800 3450700 2391500 3450700 2391500 4386300 3504800 3265100 

200 8961800 8151900 9349800 9249000 9947000 10659900 8064300 9800100 11180900 9761200 

300 25461000 25302700 26437700 24688400 23781000 26202100 24708600 28178500 25059000 25461000 

400 64722200 60846700 60580300 65921000 64425800 60608100 79263300 76501200 79691500 63829100 

500 114777700 120778200 118889700 123494500 115506100 130383800 127762200 129367800 125936400 124811700 

600 265795900 264480800 258685000 262127700 295681900 314958600 257980400 265480400 268192100 243710900 

800 868981300 884850200 971469400 784434800 777151700 775221300 800073700 822220800 780167000 881256100 

1000 
1897219200 1993033400 1899000400 2153442600 1924845600 1891192500 1920363900 1894614200 1892271700 1782781500 

 

 


